Package: MixedPsy 1.1.0

MixedPsy: Statistical Tools for the Analysis of Psychophysical Data

Tools for the analysis of psychophysical data in R. This package allows to estimate the Point of Subjective Equivalence (PSE) and the Just Noticeable Difference (JND), either from a psychometric function or from a Generalized Linear Mixed Model (GLMM). Additionally, the package allows plotting the fitted models and the response data, simulating psychometric functions of different shapes, and simulating data sets. For a description of the use of GLMMs applied to psychophysical data, refer to Moscatelli et al. (2012).

Authors:Alessandro Moscatelli [aut, cre], Priscilla Balestrucci [aut]

MixedPsy_1.1.0.tar.gz
MixedPsy_1.1.0.zip(r-4.5)MixedPsy_1.1.0.zip(r-4.4)MixedPsy_1.1.0.zip(r-4.3)
MixedPsy_1.1.0.tgz(r-4.4-any)MixedPsy_1.1.0.tgz(r-4.3-any)
MixedPsy_1.1.0.tar.gz(r-4.5-noble)MixedPsy_1.1.0.tar.gz(r-4.4-noble)
MixedPsy_1.1.0.tgz(r-4.4-emscripten)MixedPsy_1.1.0.tgz(r-4.3-emscripten)
MixedPsy.pdf |MixedPsy.html
MixedPsy/json (API)
NEWS

# Install 'MixedPsy' in R:
install.packages('MixedPsy', repos = c('https://moskante.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/moskante/mixedpsy/issues

Datasets:
  • simul_data - A simulated psychophysical dataset
  • vibro_exp3 - Data from tactile discrimination task - (Dallmann et al., 2015).

On CRAN:

3.60 score 4 stars 9 scripts 251 downloads 2 mentions 9 exports 39 dependencies

Last updated 3 years agofrom:c0067ed875. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winNOTEOct 25 2024
R-4.5-linuxNOTEOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:MixDeltaMixPlotpseMerPsychDeltaPsychFunctionPsychPlotPsychShapePsySimulatexplode

Dependencies:audiobeeprbootbrglmclicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixmgcvminqamnormtmunsellnlmenloptrpillarpkgconfigprofileModelR6RColorBrewerRcppRcppEigenrlangscalestibbleutf8vctrsviridisLitewithr